All,
This code is causing an overflow. Isn't there a setting that will allow bigger numbers?
I am not looking for more code and/or rescaling code, but a setting that I know is there that will allow larger numbers.
%mode=short
\startcomponent section1exercises
\project book
\product chapter5/chapter5
\usemodule[newmat]
\usemodule[math=ext]
\usemodule[fig-base]
\usefigurebase[figures/figlibSection1]
\setupheadnumber[chapter][6]
\setupheadnumber[section][1]
\def\qor{\quad\text{or}\quad}
\def\qqor{\qquad\text{or}\qquad}
\def\qand{\quad\text{and}\quad}
\def\qqand{\qquad\text{and}\qquad}
\setupcolors[state=start]
\definecolor[gridlines][s=0.7]
\startMPinclusions
color mygridcolor; mygridcolor=\MPcolor{gridlines};
color gridlines; gridlines:=\MPcolor{gridlines};
def vtick(expr pos)=
draw ((0,-3)--(0,3)) shifted pos;
enddef;
def htick(expr pos)=
draw ((-3,0)--(3,0)) shifted pos;
enddef;
def opendot(expr pos)=
fill fullcircle scaled 4pt shifted pos withcolor white;
draw fullcircle scaled 4pt shifted pos withcolor red;
enddef;
def filleddot(expr pos)=
fill fullcircle scaled 4pt shifted pos withcolor red;
draw fullcircle scaled 4pt shifted pos withcolor red;
enddef;
\stopMPinclusions
\startuseMPgraphic{55_grid}
for k=-5u step 1u until 5u:
draw (k,-5u)--(k,5u) withcolor gridlines;
draw (-5u,k)--(5u,k) withcolor gridlines;
endfor;
\stopuseMPgraphic
\startuseMPgraphic{55_xy_axes}
drawdblarrow (-5u,0)--(5u,0);
label.rt(btex $\tfx x$ etex, (5u,0));
label.bot(btex $\tfx 5$ etex, (5u,0));
drawdblarrow (0,-5u)--(0,5u);
label.top (btex $\tfx y$ etex, (0,5u));
label.lft(btex $\tfx 5$ etex, (0,5u));
\stopuseMPgraphic
\startuseMPgraphic{1010_grid}
for k=-10u step 1u until 10u:
draw (k,-10u)--(k,10u) withcolor gridlines;
draw (-10u,k)--(10u,k) withcolor gridlines;
endfor;
\stopuseMPgraphic
\startuseMPgraphic{1010_xy_axes}
drawdblarrow (-10u,0)--(10u,0);
label.rt(btex $\tfx x$ etex, (10u,0));
label.bot(btex $\tfx 10$ etex, (10u,0));
drawdblarrow (0,-10u)--(0,10u);
label.top (btex $\tfx y$ etex, (0,10u));
label.lft(btex $\tfx 10$ etex, (0,10u));
\stopuseMPgraphic
\startuseMPgraphic{1010_xy_axes_ti}
drawdblarrow (-10u,0)--(10u,0);
label.rt(btex $\tfx x$ etex, (10u,0));
label.bot(btex $\tfx 10$ etex, (10u,0));
label.bot(btex $\tfx -10$ etex, (-10u,0));
drawdblarrow (0,-10u)--(0,10u);
label.top (btex $\tfx y$ etex, (0,10u));
label.lft(btex $\tfx 10$ etex, (0,10u));
label.lft(btex $\tfx -10$ etex, (0,-10u));
\stopuseMPgraphic
\startuseMPgraphic{05_grid}
for k=0 step 1u until 5u:
draw (k,0)--(k,5u) withcolor gridlines;
draw (0,k)--(5u,k) withcolor gridlines;
endfor;
\stopuseMPgraphic
\startuseMPgraphic{05_xy_axes}
drawarrow (0,0)--(5u,0);
label.rt(btex $\tfx x$ etex, (5u,0));
label.bot(btex $\tfx 5$ etex, (5u,0));
drawarrow (0,0)--(0,5u);
label.top (btex $\tfx y$ etex, (0,5u));
label.lft(btex $\tfx 5$ etex, (0,5u));
\stopuseMPgraphic
\startquestions
% Exercise #29
\beginquestion
\startquestion[ex:secqu.29]
$p(x)=-x^6-4x^5+27x^4+78x^3+4x^2+376x-480$
\stopquestion
\endquestion
\beginlonganswer
\startanswer
%\startlinecorrection[blank]
%\midaligned{\externalfigure[q25v][width=0.4\textwidth]}
%\midaligned{\externalfigure[q25][width=0.4\textwidth]}
%\stoplinecorrection
\stopanswer
\endlonganswer
\beginshortanswer
\startanswer
Note that the leading term $-x^6$ (dashed) has the same end-behavior as the polynomial $p$.
\startbuffer
%initialize scale and draw axes
numeric u; 20ux=2in; 10000uy=2in;
drawdblarrow (-10ux,0)--(10ux,0);
label.rt(btex $\tfx x$ etex, (10ux,0));
label.bot(btex $\tfx -10$ etex, (-10ux,0));
label.bot(btex $\tfx 10$ etex, (10ux,0));
drawdblarrow (0,-5000uy)--(0,5000uy);
label.top(btex $\tfx y$ etex, (0,5000uy));
label.lft(btex $\tfx -5000$ etex, (0,-5000uy));
label.lft(btex $\tfx 15$ etex, (0,5000uy));
%leading term
vardef lead(expr x)=
-1*x*x*x*x*x*x
enddef;
%polynomial
vardef p(expr x)=
-1*x**6-4*x**5+27*x**4+78*x**3+4*x**2+376*x-480
enddef;
%path p_lead
path p_lead;
p_lead:=(-4.1352,lead(-4.1352));
for x=-4.1352 step .1 until 4.1252:
p_lead:=p_lead--(x,lead(x));
endfor;
p_lead:=p_lead--(4.1252,lead(4.1252));
p_lead:=p_lead xyscaled(ux,uy);
draw p_lead dashed evenly withcolor red;
%path p_p
path p_p;
p_p:=(-6.5009,p(-6.5009));
for x=-6.5009 step .1 until 5.3356 :
p_p:=p_p--(x,p(x));
endfor;
p_p:=p_p--( 5.3356 ,p(5.3356));
p_p:=p_p xyscaled(ux,uy);
drawdblarrow p_p withcolor blue;
label.rt(btex $\tfx p(x)=-x^6-4x^5+27x^4+78x^3+4x^2+376x-480$ etex, (5.3356 ,p(5.3356 )) xyscaled(ux,uy));
\stopbuffer
\startlinecorrection[blank]
\midaligned{\processMPbuffer}
\stoplinecorrection
\stopanswer
\endshortanswer
% Exercise #30
\beginquestion
\startquestion[ex:secqu.30]
$p(x)=2x^4-3x^3+x-10$
\stopquestion
\endquestion
\beginlonganswer[-]
\startanswer
\stopanswer
\endlonganswer
\beginshortanswer[-]
\startanswer
\stopanswer
\endshortanswer
\stopquestions
\placeanswers\kern0pt
\stopcomponent