Hi, How to complete the grid ? Thank you. Fabrice \setuppapersize[A4] \setuplayout[ backspace=5mm, width=middle, topspace=5mm, height=middle, header=0pt, footer=0pt, ] \definetypeface [me] [rm] [serif] [pagella] [default] \definetypeface [me] [ss] [sans] [dejavu] [default] \definetypeface [me] [mm] [math] [xits] [default] \setupbodyfont[me,12pt] \startsetups[table:initialize] \setupTABLE[height=2.25cm,width=2.25cm] \setupTABLE[column][1,4,7][frame=off,rulethickness=1.2pt,leftframe=on] \setupTABLE[column][9][frame=off,rulethickness=1.2pt,rightframe=on] \setupTABLE[row][9][frame=off,rulethickness=1.2pt,bottomframe=on] \setupTABLE[row][1,4,7][frame=off,rulethickness=1.2pt,topframe=on] \setupTABLE[start][align={middle,lohi}] \stopsetups \starttext \startmidaligned \switchtobodyfont[small] \bTABLE[setups=table:initialize] \bTR \bTD \eTD \bTD $\sqrt{25}$ \eTD \bTD \eTD \bTD Partie entière de $\pi$ \eTD \bTD \eTD \bTD $\frac{48}{8}$ \eTD \bTD \eTD \bTD \eTD \bTD 5 augmenté de 40\,\% \eTD \eTR \bTR \bTD \eTD \bTD \eTD \bTD \eTD \bTD \eTD \bTD $4\sqrt{4}$ \eTD \bTD Le double de $\frac{15^3 \times 2^2}{5^2 \times 6^3}$\eTD \bTD \eTD \bTD Nombre premier pair \eTD \bTD Nombre de faces d'une pyramide à base triangulaire \eTD \eTR \bTR \bTD \eTD \bTD 30\,\% de 30 \eTD \bTD $2^3$ \eTD \bTD Opposé de $(5-9)$\eTD \bTD Nombre d'axes de symétrie d'un rectangle \eTD \bTD \eTD \bTD Nombre de faces d'un cube \eTD \bTD \eTD \bTD \eTD \eTR \bTR \bTD$\frac{\sqrt{324}}{2}$ \eTD \bTD \eTD \bTD $27^0$ \eTD \bTD \eTD \bTD \eTD \bTD Numérateur de la fraction irréductible égale à $\frac{9\,261}{33\,957}$ \eTD \bTD L'inverse de $\sin{\unit{30 degree}}$\eTD \bTD\eTD \bTD PGCD de 11\,760 et de 2\,574\eTD \eTR \bTR \bTD \eTD \bTD $\sqrt{25-9}$ \eTD \bTD \eTD \bTD \eTD \bTD \eTD \bTD \eTD \bTD \eTD \bTD $\frac{10^{-2}}{0.01}$\eTD \bTD\eTD \eTR \bTR \bTD$\frac{125}{25}$ \eTD \bTD \eTD \bTD Quatrième nombre premier \eTD \bTD $\sqrt{1}\times \sqrt{4}$\eTD \bTD Nombre de diviseurs de 20 \eTD \bTD \eTD \bTD Numérateur de $\frac{7}{4}-\frac{1}{2}+\frac{5}{8}-\frac{3}{4}$\eTD \bTD \eTD \bTD $\left(2\sqrt{2}\right)^2$ \eTD \eTR \bTR \bTD Le quart du seizième de $256$\eTD \bTD \eTD \bTD Nombre de côtés d'un pentagone\eTD \bTD \eTD \bTD L'opposé de la différence du tiers de $21$ et du carré de $4$ \eTD \bTD \eTD \bTD Nombre d'axes de symétrie d'un triangle équilatéral\eTD \bTD Nombre de sommets d'un cube\eTD \bTD\eTD \eTR \bTR \bTD \eTD \bTD $\frac{\left(2\sqrt{3}\right)^2}{12}$\eTD \bTD \eTD \dontleavehmode \bTD \startMPcode defaultscale:=0.8; angle_radius:=4pt; def mark_rt_angle(expr a, b, c)= draw((1,0)--(1,1)--(0,1)) zscaled (angle_radius*unitvector(a-b)) shifted b enddef; def midpoint(expr a, b) = (.5[a,b]) enddef; u:=0.4cm; path p; z0=(0,0); z1=(4u,0); z2=(0,3u); z3=(2u,0); z4=(0,1.5u); z5=midpoint(z1,z2); draw z0--z1--z2--cycle; mark_rt_angle(z1,z0,z2); label.bot("4",z3); label.lft("3",z4); label.urt("?",z5); \stopMPcode \eTD \bTD Solution de l'équation $4x-5=2x+9$ \eTD \bTD \eTD \bTD \eTD \bTD \eTD \bTD$\left(\frac{2}{\sqrt{2}}\right)^2$\eTD \eTR \bTR \bTD$\frac{\sqrt{192}-\sqrt{128}}{\sqrt{3}-\sqrt{2}}$ \eTD \bTD \eTD \bTD \eTD \bTD $2^{\rm ?}=2$ \eTD \bTD \eTD \bTD Nombre d'axes de symétrie d'un carré \eTD \bTD \eTD \bTD $\sqrt{81}-\sqrt{4}$\eTD \bTD\eTD \eTR \eTABLE \stopmidaligned \stoptext
participants (1)
-
Fabrice Couvreur