Hi,
How to complete the grid ?
Thank you.
Fabrice

\setuppapersize[A4]
\setuplayout[
        backspace=5mm,
        width=middle,
        topspace=5mm,
        height=middle,
        header=0pt,
        footer=0pt,
            ]

\definetypeface [me] [rm] [serif] [pagella] [default]
\definetypeface [me] [ss] [sans]  [dejavu]  [default]
\definetypeface [me] [mm] [math]  [xits]    [default]

\setupbodyfont[me,12pt]


\startsetups[table:initialize]
  \setupTABLE[height=2.25cm,width=2.25cm]
  \setupTABLE[column][1,4,7][frame=off,rulethickness=1.2pt,leftframe=on]
  \setupTABLE[column][9][frame=off,rulethickness=1.2pt,rightframe=on]
  \setupTABLE[row][9][frame=off,rulethickness=1.2pt,bottomframe=on]
  \setupTABLE[row][1,4,7][frame=off,rulethickness=1.2pt,topframe=on]
  \setupTABLE[start][align={middle,lohi}]
\stopsetups
\starttext
\startmidaligned
\switchtobodyfont[small]
\bTABLE[setups=table:initialize]
    \bTR
                \bTD  \eTD
        \bTD $\sqrt{25}$ \eTD
        \bTD  \eTD
        \bTD Partie entière de $\pi$ \eTD
        \bTD  \eTD
        \bTD $\frac{48}{8}$ \eTD
        \bTD  \eTD
                \bTD  \eTD
                \bTD 5 augmenté de 40\,\% \eTD
    \eTR
\bTR
                \bTD  \eTD
        \bTD  \eTD
        \bTD  \eTD
        \bTD  \eTD
        \bTD $4\sqrt{4}$ \eTD
        \bTD  Le double de $\frac{15^3 \times 2^2}{5^2 \times 6^3}$\eTD
                \bTD  \eTD
                \bTD Nombre premier pair \eTD
                \bTD Nombre de faces d'une pyramide à base triangulaire \eTD
    \eTR
\bTR
                \bTD  \eTD
        \bTD 30\,\% de 30  \eTD
        \bTD $2^3$ \eTD
        \bTD  Opposé de $(5-9)$\eTD
        \bTD Nombre d'axes de symétrie d'un rectangle \eTD
        \bTD \eTD
                \bTD Nombre de faces d'un cube \eTD
                \bTD  \eTD
                \bTD \eTD
    \eTR
\bTR
                \bTD$\frac{\sqrt{324}}{2}$  \eTD
        \bTD  \eTD
        \bTD $27^0$ \eTD
        \bTD \eTD
                \bTD  \eTD
        \bTD Numérateur de la fraction irréductible égale à $\frac{9\,261}{33\,957}$ \eTD
        \bTD L'inverse de $\sin{\unit{30 degree}}$\eTD
                \bTD\eTD
                \bTD PGCD de 11\,760 et de 2\,574\eTD
    \eTR
\bTR
                \bTD \eTD
        \bTD $\sqrt{25-9}$ \eTD
        \bTD \eTD
        \bTD \eTD
                \bTD  \eTD
        \bTD  \eTD
        \bTD \eTD
                \bTD $\frac{10^{-2}}{0.01}$\eTD
                \bTD\eTD
    \eTR
\bTR
                \bTD$\frac{125}{25}$ \eTD
        \bTD \eTD
        \bTD Quatrième nombre premier \eTD
        \bTD $\sqrt{1}\times \sqrt{4}$\eTD
                \bTD Nombre de diviseurs de 20 \eTD
        \bTD  \eTD
        \bTD Numérateur de $\frac{7}{4}-\frac{1}{2}+\frac{5}{8}-\frac{3}{4}$\eTD
                \bTD \eTD
                \bTD $\left(2\sqrt{2}\right)^2$ \eTD
    \eTR
\bTR
                \bTD Le quart du seizième de $256$\eTD
        \bTD \eTD
        \bTD Nombre de côtés d'un pentagone\eTD
        \bTD \eTD
                \bTD L'opposé de la différence du tiers de $21$ et du carré de $4$ \eTD
        \bTD  \eTD
        \bTD Nombre d'axes de symétrie d'un triangle équilatéral\eTD
                \bTD Nombre de sommets d'un cube\eTD
                \bTD\eTD
    \eTR
\bTR
                \bTD \eTD
        \bTD $\frac{\left(2\sqrt{3}\right)^2}{12}$\eTD
        \bTD \eTD
\dontleavehmode \bTD
\startMPcode
defaultscale:=0.8;
angle_radius:=4pt;
def mark_rt_angle(expr a, b, c)=
    draw((1,0)--(1,1)--(0,1))
    zscaled (angle_radius*unitvector(a-b))
    shifted b
enddef;
def midpoint(expr a, b) = (.5[a,b]) enddef;
u:=0.4cm;
path p;
z0=(0,0);
z1=(4u,0); 
z2=(0,3u);
z3=(2u,0);
z4=(0,1.5u);
z5=midpoint(z1,z2);
draw z0--z1--z2--cycle;
mark_rt_angle(z1,z0,z2);
label.bot("4",z3);
label.lft("3",z4);
label.urt("?",z5);
\stopMPcode
\eTD        \bTD Solution de l'équation $4x-5=2x+9$ \eTD
                \bTD  \eTD
        \bTD  \eTD
        \bTD  \eTD
                \bTD$\left(\frac{2}{\sqrt{2}}\right)^2$\eTD
    \eTR
\bTR
                \bTD$\frac{\sqrt{192}-\sqrt{128}}{\sqrt{3}-\sqrt{2}}$ \eTD
        \bTD \eTD
        \bTD \eTD
        \bTD $2^{\rm ?}=2$ \eTD
                \bTD  \eTD
        \bTD Nombre d'axes de symétrie d'un carré \eTD
        \bTD \eTD
                \bTD $\sqrt{81}-\sqrt{4}$\eTD
                \bTD\eTD
    \eTR
\eTABLE
\stopmidaligned
\stoptext