2008

In this paper we study interpolation in local extensions of a base theory. We identify situations in which it is possible to obtain interpolants in a hierarchical manner, by using a prover and a procedure for generating interpolants in the base theory as black-boxes. We present several examples of theory extensions in which interpolants can be computed this way, and discuss applications in verification, knowledge representation, and modular reasoning in combinations of local theories.

We introduce an extension of Hoare logic for call-by-value higher-order functions with ML-like local reference generation. Local references may be generated dynamically and exported outside their scope, may store higher-order functions and may be used to construct complex mutable data structures. This primitive is captured logically using a predicate asserting reachability of a reference name from a possibly higher-order datum and quantifiers over hidden references. We explore the logic's descriptive and reasoning power with non-trivial programming examples combining higher-order procedures and dynamically generated local state. Axioms for reachability and local invariant play a central role for reasoning about the examples.

We propose a framework for the specification of behaviour-preserving reconfigurations of systems modelled as Petri nets. The framework is based on open nets, a mild generalisation of ordinary Place/Transition nets suited to model open systems which might interact with the surrounding environment and endowed with a colimit-based composition operation. We show that natural notions of bisimilarity over open nets are congruences with respect to the composition operation. The considered behavioural equivalences differ for the choice of the observations, which can be single firings or parallel steps. Additionally, we consider weak forms of such equivalences, arising in the presence of unobservable actions. We also provide an up-to technique for facilitating bisimilarity proofs. The theory is used to identify suitable classes of reconfiguration rules (in the double-pushout approach to rewriting) whose application preserves the observational semantics of the net.

In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP.

The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.

Strong and weak simulation relations have been proposed for Markov chains, while strong simulation and strong probabilistic simulation relations have been proposed for probabilistic automata. However, decision algorithms for strong and weak simulation over Markov chains, and for strong simulation over probabilistic automata are not efficient, which makes it as yet unclear whether they can be used as effectively as their non-probabilistic counterparts. This paper presents drastically improved algorithms to decide whether some (discrete- or continuous-time) Markov chain strongly or weakly simulates another, or whether a probabilistic automaton strongly simulates another. The key innovation is the use of parametric maximum flow techniques to amortize computations. We also present a novel algorithm for deciding strong probabilistic simulation preorders on probabilistic automata, which has polynomial complexity via a reduction to an LP problem. When extending the algorithms for probabilistic automata to their continuous-time counterpart, we retain the same complexity for both strong and strong probabilistic simulations.

We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two […]

We study and provide efficient algorithms for multi-objective model checking problems for Markov Decision Processes (MDPs). Given an MDP, M, and given multiple linear-time (\omega -regular or LTL) properties \varphi\_i, and probabilities r\_i \epsilon [0,1], i=1,...,k, we ask whether there exists a strategy \sigma for the controller such that, for all i, the probability that a trajectory of M controlled by \sigma satisfies \varphi\_i is at least r\_i. We provide an algorithm that decides whether there exists such a strategy and if so produces it, and which runs in time polynomial in the size of the MDP. Such a strategy may require the use of both randomization and memory. We also consider more general multi-objective \omega -regular queries, which we motivate with an application to assume-guarantee compositional reasoning for probabilistic systems. Note that there can be trade-offs between different properties: satisfying property \varphi\_1 with high probability may necessitate satisfying \varphi\_2 with low probability. Viewing this as a multi-objective optimization problem, we want information about the "trade-off curve" or Pareto curve for maximizing the probabilities of different properties. We show that one can compute an approximate Pareto curve with respect to a set of \omega -regular properties in time polynomial in the size of the MDP. Our quantitative upper bounds use LP methods. We also study qualitative multi-objective model checking problems, and […]

Compact categories have lately seen renewed interest via applications to quantum physics. Being essentially finite-dimensional, they cannot accomodate (co)limit-based constructions. For example, they cannot capture protocols such as quantum key distribution, that rely on the law of large numbers. To overcome this limitation, we introduce the notion of a compactly accessible category, relying on the extra structure of a factorisation system. This notion allows for infinite dimension while retaining key properties of compact categories: the main technical result is that the choice-of-duals functor on the compact part extends canonically to the whole compactly accessible category. As an example, we model a quantum key distribution protocol and prove its correctness categorically.

We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languages of F-coalgebras is closed under taking unions, intersections, and projections. We also prove that if a nondeterministic F-automaton accepts some coalgebra it accepts a finite one of the size of the automaton. Our main technical result concerns an explicit construction which transforms a given alternating F-automaton into an equivalent nondeterministic one, whose size is exponentially bound by the size of the original automaton.

Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a "within" modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.

Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, […]

Resolution refinements called w-resolution trees with lemmas (WRTL) and with input lemmas (WRTI) are introduced. Dag-like resolution is equivalent to both WRTL and WRTI when there is no regularity condition. For regular proofs, an exponential separation between regular dag-like resolution and both regular WRTL and regular WRTI is given. It is proved that DLL proof search algorithms that use clause learning based on unit propagation can be polynomially simulated by regular WRTI. More generally, non-greedy DLL algorithms with learning by unit propagation are equivalent to regular WRTI. A general form of clause learning, called DLL-Learn, is defined that is equivalent to regular WRTL. A variable extension method is used to give simulations of resolution by regular WRTI, using a simplified form of proof trace extensions. DLL-Learn and non-greedy DLL algorithms with learning by unit propagation can use variable extensions to simulate general resolution without doing restarts. Finally, an exponential lower bound for WRTL where the lemmas are restricted to short clauses is shown.

Higher-order pushdown systems (PDSs) generalise pushdown systems through the use of higher-order stacks, that is, a nested "stack of stacks" structure. These systems may be used to model higher-order programs and are closely related to the Caucal hierarchy of infinite graphs and safe higher-order recursion schemes. We consider the backwards-reachability problem over higher-order Alternating PDSs (APDSs), a generalisation of higher-order PDSs. This builds on and extends previous work on pushdown systems and context-free higher-order processes in a non-trivial manner. In particular, we show that the set of configurations from which a regular set of higher-order APDS configurations is reachable is regular and computable in n-EXPTIME. In fact, the problem is n-EXPTIME-complete. We show that this work has several applications in the verification of higher-order PDSs, such as linear-time model-checking, alternation-free mu-calculus model-checking and the computation of winning regions of reachability games.

We provide a complete description of the Wadge hierarchy for deterministically recognisable sets of infinite trees. In particular we give an elementary procedure to decide if one deterministic tree language is continuously reducible to another. This extends Wagner's results on the hierarchy of omega-regular languages of words to the case of trees.

Visibly pushdown automata are input-driven pushdown automata that recognize some non-regular context-free languages while preserving the nice closure and decidability properties of finite automata. Visibly pushdown automata with multiple stacks have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the concept of visibility further to obtain a rich automata class that can even express properties beyond the class of context-free languages. At the same time, their automata are closed under boolean operations, have a decidable emptiness and inclusion problem, and enjoy a logical characterization in terms of a monadic second-order logic over words with an additional nesting structure. These results require a restricted version of visibly pushdown automata with multiple stacks whose behavior can be split up into a fixed number of phases. In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown automata with two stacks) in their unrestricted form. We show that they are expressively equivalent to the existential fragment of monadic second-order logic. Furthermore, it turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt words with multiple nestings. Combining these results, we conclude that 2-stack visibly pushdown automata are not closed under complementation. Finally, we discuss the expressive power of Büchi 2-stack visibly pushdown automata running on infinite (nested) words. Extending the […]

We discuss the treatment of initial datatypes and final process types in the wide-spectrum language HasCASL. In particular, we present specifications that illustrate how datatypes and process types arise as bootstrapped concepts using HasCASL's type class mechanism, and we describe constructions of types of finite and infinite trees that establish the conservativity of datatype and process type declarations adhering to certain reasonable formats. The latter amounts to modifying known constructions from HOL to avoid unique choice; in categorical terminology, this means that we establish that quasitoposes with an internal natural numbers object support initial algebras and final coalgebras for a range of polynomial functors, thereby partially generalising corresponding results from topos theory. Moreover, we present similar constructions in categories of internal complete partial orders in quasitoposes.