startcombination alignment problem
Hi, I want to put three graphics by this way: [graphic 1] [graphic 2] [graphic 3] where graphic 3 is centered. I use combination, but graphic 3 puts me in left [graphic 1] [graphic 2] [graphic 3] How can I solve that? Thanks in advance, Xan. PS: Please, CCme. I put the code: \placefigure [here] [figura-area] {Camins sobre $w$} {\startcombination[2*1] { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141 % Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt. % Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 }); % el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); % Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 \filldraw (-1.181475, 0) circle (2pt); \filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt); % Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; \draw (1.65, -0.3) node {$\sigma_i(j)$}; % Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$}; % PROVES %\draw[out=45,in=-45] (0,0) to (0.5,8); %\draw[color=blue,->] (0,0) .. controls (0.1,2) .. (0.2,3) .. controls (0.3,4) and (0.4,6) .. (0.5,8); %\draw (0,0) arc (-90:90:3 and 4); %\draw (0,0) arc (270:90:3 and 4); %\draw[color=green] plot[domain=-3.141:3.141,smooth,variable=\t] ({4*sin(\t + (.1 * rand) r)},{4*cos(\t r)}); %\draw (0,0) arc (-90:81.82:2 and 4); %\draw[decorate,decoration={random steps,segment length=2mm, amplitude=2pt}] (0,0) arc (-90:97.18:3.5 and 4); % \draw[very thin,color=gray] (-5.1,-5.1) grid [step=1] (5.9,5.9); % \draw[->] (-5.2,0) -- (6.2,0) node[right] {$x$}; % \draw[->] (0,-5.2) -- (0,5.2) node[above] {$y$}; % r = \frac{-1}{3} x + 3 %\filldraw (3,2) circle (2pt); %\filldraw (-3,4) circle (2pt); %\draw (-6,5) -- (6,1); %\draw (1, 3.5) node {$r$}; \stoptikzpicture} {Les seccions de $\pi(w(i))$.} { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141 % Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt. % Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 }); % el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); % Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 \filldraw (-1.181475, 0) circle (2pt); \filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt); % Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; \draw (1.65, -0.3) node {$\sigma_i(j)$}; % Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$}; \stoptikzpicture} {El camí $\theta_{i,j}$.} \stopcombination \startcombination[1*1] { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141 % Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt. % Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 }); % el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); % el sentit de \tau_i \draw[decorate,decoration={markings,mark=at position .4 with {\arrow[green,line width=1mm]{<}}}] plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw[decorate,decoration={markings,mark=at position .6 with {\arrow[green,line width=1mm]{>}}}] plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 }); % Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 %\filldraw (-1.181475, 0) circle (2pt); %\filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt); %\filldraw [top color=yellow] plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 }); % Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (1.5,0) node {$\tau_i$}; \draw (-0.8,4.5) node {$\sigma_{i+1}(\frac{\lvert w \rvert}{2})$}; \draw (0.8,4.5) node {$\sigma_i(\frac{\lvert w \rvert}{2})$}; %\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; %\draw (1.65, -0.3) node {$\sigma_i(j)$}; % Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$}; \stoptikzpicture} {El camí $\tau_i$} \stopcombination }
Hey, I know now: Nested combinations: combination[1*2] combination[2*1] combination[1*1] (this is only a sketch) Thanks, Xan. En/na Xan ha escrit:
Hi,
I want to put three graphics by this way:
[graphic 1] [graphic 2] [graphic 3]
where graphic 3 is centered.
I use combination, but graphic 3 puts me in left [graphic 1] [graphic 2] [graphic 3]
How can I solve that? Thanks in advance, Xan.
PS: Please, CCme. I put the code:
\placefigure [here] [figura-area] {Camins sobre $w$} {\startcombination[2*1] { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141
% Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.
% Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 });
% el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)});
% Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 \filldraw (-1.181475, 0) circle (2pt); \filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt);
% Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; \draw (1.65, -0.3) node {$\sigma_i(j)$};
% Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$};
% PROVES %\draw[out=45,in=-45] (0,0) to (0.5,8); %\draw[color=blue,->] (0,0) .. controls (0.1,2) .. (0.2,3) .. controls (0.3,4) and (0.4,6) .. (0.5,8); %\draw (0,0) arc (-90:90:3 and 4); %\draw (0,0) arc (270:90:3 and 4); %\draw[color=green] plot[domain=-3.141:3.141,smooth,variable=\t] ({4*sin(\t + (.1 * rand) r)},{4*cos(\t r)}); %\draw (0,0) arc (-90:81.82:2 and 4); %\draw[decorate,decoration={random steps,segment length=2mm, amplitude=2pt}] (0,0) arc (-90:97.18:3.5 and 4); % \draw[very thin,color=gray] (-5.1,-5.1) grid [step=1] (5.9,5.9); % \draw[->] (-5.2,0) -- (6.2,0) node[right] {$x$}; % \draw[->] (0,-5.2) -- (0,5.2) node[above] {$y$}; % r = \frac{-1}{3} x + 3 %\filldraw (3,2) circle (2pt); %\filldraw (-3,4) circle (2pt); %\draw (-6,5) -- (6,1); %\draw (1, 3.5) node {$r$}; \stoptikzpicture} {Les seccions de $\pi(w(i))$.} { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141
% Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.
% Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 });
% el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)});
% Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 \filldraw (-1.181475, 0) circle (2pt); \filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt);
% Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; \draw (1.65, -0.3) node {$\sigma_i(j)$};
% Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$}; \stoptikzpicture} {El camí $\theta_{i,j}$.} \stopcombination
\startcombination[1*1] { \starttikzpicture[scale=1] % Els punts \filldraw (0,-4) circle (2pt); \filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141 \filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141
% Les línies entre els punts \draw (-0.4216,3.9603) -- (0.4216,3.9603); \draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); \filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.
% Els combings % Dibuixo: % amb y la línia recta que uneix els dos punts, directament % per x faig un funció del sinus (sin nx + ax = k) \draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 });
% el sentit d'omega \draw[decorate,decoration={markings,mark=at position .9 with {\arrow[blue,line width=1mm]{<}}}] plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)}); % el sentit de \tau_i \draw[decorate,decoration={markings,mark=at position .4 with {\arrow[green,line width=1mm]{<}}}] plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin (7.31228*\t r) },{18.8812*\t -4 }); \draw[decorate,decoration={markings,mark=at position .6 with {\arrow[green,line width=1mm]{>}}}] plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 });
% Els punts de les cel·les % Calcul els combings per a y= 0 i y=1 %\filldraw (-1.181475, 0) circle (2pt); %\filldraw (1.181475, 0) circle (2pt); %\filldraw (1.161048, 1) circle (2pt); %\filldraw (-1.161048, 1) circle (2pt); %\filldraw [top color=yellow] plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin (7.31228*\t r) },{18.8812*\t -4 });
% Els noms \draw (0, -4.3) node {$1 \in G$}; \draw (2.5, -3) node {$w$}; \draw (1.5,0) node {$\tau_i$}; \draw (-0.8,4.5) node {$\sigma_{i+1}(\frac{\lvert w \rvert}{2})$}; \draw (0.8,4.5) node {$\sigma_i(\frac{\lvert w \rvert}{2})$}; %\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$}; %\draw (1.65, -0.3) node {$\sigma_i(j)$};
% Els noms dels camins %\draw (1, 0.3) node {$a$}; %\draw (3, 0.3) node {$b$}; %\draw (3.7, 1) node {$c$}; %\draw (3, 1.7) node {$d$}; %\draw (1, 1.7) node {$e$}; %\draw (0.3, 1) node {$f$}; %\draw (2.3, 1) node {$g$}; \stoptikzpicture} {El camí $\tau_i$}
\stopcombination
}
Am 10.06.2009 um 18:26 schrieb Xan:
Hi,
I want to put three graphics by this way:
[graphic 1] [graphic 2] [graphic 3]
where graphic 3 is centered.
I use combination, but graphic 3 puts me in left [graphic 1] [graphic 2] [graphic 3]
How can I solve that?
The same question was asked in the past by someone else and your should find it together with the answer in the mail archive, search for \startcombination or \bTD[nx=2] ... Wolfgang
En/na Wolfgang Schuster ha escrit:
Am 10.06.2009 um 18:26 schrieb Xan:
Hi,
I want to put three graphics by this way:
[graphic 1] [graphic 2] [graphic 3]
where graphic 3 is centered.
I use combination, but graphic 3 puts me in left [graphic 1] [graphic 2] [graphic 3]
How can I solve that?
The same question was asked in the past by someone else and your should find it together with the answer in the mail archive, search for \startcombination or \bTD[nx=2] ...
Wolfgang
Thanks Wolfgang for your answer. I use google and I not found it, But I solve that with nested combinations. Xan.
participants (2)
-
Wolfgang Schuster
-
Xan