Hi, I'd like to have something like this: Let $X$ be a~real Banach space, $D$~an open subset of~$X$ containing~$0$ and $T$ a~continuous mapping from $\overbar{D}$ to~$X$. We say that $T$ satisfies the {\em Mönch condition} if the following implication holds: \blank[small] \startalignment[middle] If $C\subset\overbar{D}$ is countable and $C\subset\clconv\bigl(\{0\}\cup F(C)\bigr)$, then $\overbar{C}$ is compact. \stopalignment \blank[small] Is there any option for alignment which would enable me not to put the blanks manually? TIA, -- Marcin Borkowski http://mbork.pl
Am 06.09.2011 um 12:19 schrieb Marcin Borkowski:
Hi,
I'd like to have something like this:
Let $X$ be a~real Banach space, $D$~an open subset of~$X$ containing~$0$ and $T$ a~continuous mapping from $\overbar{D}$ to~$X$. We say that $T$ satisfies the {\em Mönch condition} if the following implication holds: \blank[small] \startalignment[middle] If $C\subset\overbar{D}$ is countable and $C\subset\clconv\bigl(\{0\}\cup F(C)\bigr)$, then $\overbar{C}$ is compact. \stopalignment \blank[small]
Is there any option for alignment which would enable me not to put the blanks manually?
\definestartstop [centered] [before={\blank[small]}, after={\blank[small]}, commands={\setupalign[middle]}] \starttext … \startcentered … \stopcentered … \stoptext Wolfgang
participants (2)
-
Marcin Borkowski
-
Wolfgang Schuster