Hi, Some days ago, I asked a method to put theorem numbers in a framed title. Recently, Wolfgang gave me a solution which worked very well. Although the first one is much simpler than the second, I’d like to show two samples made by his suggestion. I hope that it may help someone who has the similar problem. Thanks Wolfgang again. Best regards, Dalyoung %%%%%%%%%% first method %1. use \enumerationparameter{text} and add “text=Theorem” in \defineenumeration. %%%%%%%%%%% \defineframed [FunnyFramed] [frame=off, loffset=1ex, roffset=1ex, foregroundstyle=\ssbf] \startuseMPgraphic{FunnyFrame} picture p ; numeric o ; path a, b ; pair c ; p := textext.rt("\FunnyFramed{\enumerationparameter{text} \convertedcounter[Theorem]}") ; o := BodyFontSize ; a := unitsquare xyscaled (OverlayWidth,OverlayHeight) ; p := p shifted (2o,OverlayHeight-ypart center p) ; drawoptions (withpen pencircle scaled 1pt withcolor .625red) ; b := a superellipsed .95 ; draw b ; b := (boundingbox p) superellipsed .95 ; fill b withcolor .85white ; draw b ; draw p withcolor black ; setbounds currentpicture to a ; \stopuseMPgraphic \defineoverlay[FunnyFrame][\useMPgraphic{FunnyFrame}] \defineframedtext [FunnyText] [frame=off, background=FunnyFrame, before={\blank[line,halfline]}, after={\blank[line]}, offset=\bodyfontsize, width=\textwidth] \defineenumeration[Theorem] [title=no, text=Theorem, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, headcommand=\gobbleoneargument, before=\startFunnyText, after=\stopFunnyText] \defineenumeration[Lemma] [title=no, text=Lemma, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, counter=Theorem, headcommand=\gobbleoneargument, before=\startFunnyText, after=\stopFunnyText] \defineenumeration[Coro] [title=no, text=Corollary, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, counter=Theorem, headcommand=\gobbleoneargument, before=\startFunnyText, after=\stopFunnyText] \starttext \dorecurse{3} {\chapter{Chapter Title} \startLemma Fort's space is a compact and Hausdorff topological space. \stopLemma \startTheorem Fort's space is a compact and Hausdorff topological space. \stopTheorem \startTheorem Let $X$ be a uncountable set. Let $\infty$ is a fixed point of $X$. Let $\mathcal T$ be the family of subsets $G$ such that either (i) $\infty \notin G$ or (ii) $\infty \in G \text{ and } G^c$ is finite. The space $(X, {\mathcal T} )$ is called {\bf Fort's space}. \stopTheorem \startLemma Fort's space is a compact and Hausdorff topological space. \stopLemma \startCoro Fort's space is a compact and Hausdorff topological space. \stopCoro } \stoptext %%%%% 2nd method %2. use \MPvar{} and define 3 different backgrounds, 3 different framedtexts like % \defineoverlay[FunnyFrameT][\useMPgraphic{FunnyFrame}{what=Theorem}] %%%%% \defineframed [FunnyFramed] [frame=off, loffset=1ex, roffset=1ex, foregroundstyle=\ssbf] \startuseMPgraphic{FunnyFrame} picture p ; numeric o ; path a, b ; pair c ; p := textext.rt("\FunnyFramed{\MPvar{what} \convertedcounter[Theorem]}") ; o := BodyFontSize ; a := unitsquare xyscaled (OverlayWidth,OverlayHeight) ; p := p shifted (2o,OverlayHeight-ypart center p) ; drawoptions (withpen pencircle scaled 1pt withcolor .625red) ; b := a superellipsed .95 ; draw b ; b := (boundingbox p) superellipsed .95 ; fill b withcolor .85white ; draw b ; draw p withcolor black ; setbounds currentpicture to a ; \stopuseMPgraphic \defineoverlay[FunnyFrameT][\useMPgraphic{FunnyFrame}{what=Theorem}] \defineoverlay[FunnyFrameL][\useMPgraphic{FunnyFrame}{what=Lemma}] \defineoverlay[FunnyFrameC][\useMPgraphic{FunnyFrame}{what=Corollary}] \defineframedtext [FunnyTheorem] [frame=off, background=FunnyFrameT, before={\blank[line,halfline]}, after={\blank[line]}, offset=\bodyfontsize, width=\textwidth] \defineframedtext [FunnyLemma] [frame=off, background=FunnyFrameL, before={\blank[line,halfline]}, after={\blank[line]}, offset=\bodyfontsize, width=\textwidth] \defineframedtext [FunnyCoro] [frame=off, background=FunnyFrameC, before={\blank[line,halfline]}, after={\blank[line]}, offset=\bodyfontsize, width=\textwidth] \defineenumeration[Theorem] [title=no, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, headcommand=\gobbleoneargument, before=\startFunnyTheorem, after=\stopFunnyTheorem] \defineenumeration[Lemma] [title=no, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, counter=Theorem, headcommand=\gobbleoneargument, before=\startFunnyLemma, after=\stopFunnyLemma] \defineenumeration[Coro] [title=no, prefix=yes, prefixsegments=chapter, way=bychapter, alternative=command, counter=Theorem, headcommand=\gobbleoneargument, before=\startFunnyCoro, after=\stopFunnyCoro] \starttext \dorecurse{3} {\chapter{Chapter Title} \startLemma Fort's space is a compact and Hausdorff topological space. \stopLemma \startTheorem Fort's space is a compact and Hausdorff topological space. \stopTheorem \startTheorem Let $X$ be a uncountable set. Let $\infty$ is a fixed point of $X$. Let $\mathcal T$ be the family of subsets $G$ such that either (i) $\infty \notin G$ or (ii) $\infty \in G \text{ and } G^c$ is finite. The space $(X, {\mathcal T} )$ is called {\bf Fort's space}. \stopTheorem \startLemma Fort's space is a compact and Hausdorff topological space. \stopLemma \startCoro Fort's space is a compact and Hausdorff topological space. \stopCoro } \stoptext