Not necessary. Let me add comments to my code in places where I need help. My comments are marked with [DA 6/25]. \startbuffer numeric w,h; w=4cm;h=4cm; % inititialize numerator and denominator of the slope of f numeric a; a=1.5; % initialize choice of function numeric choice; choice=2; %<=====[DA 6/25]Test to see if code works for 1, 2, or 3. % initialize type of reflection numeric reflect; reflect=3; %<======[DA 6/25]Test to see if code works for 1, 2, 3, or 4 % define linear function f vardef f(expr x)= a*x*x enddef; % define linear function g vardef g(expr x)= a*abs(x) enddef; % define linear function h vardef h(expr x)= a*x*(x-2)*(x+2)/2 enddef; % define paths for functions f, g, and h, respectively path P, F, G, H; F:=(-5,f(-5)); for x=-5 step .1 until 5: F:=F--(x,f(x)); endfor; G:=(-5,g(-5)); for x=-5 step .1 until 5: G:=G--(x,g(x)); endfor; H:=(-5,h(-5)); for x=-5 step .1 until 5: H:=H--(x,h(x)); endfor; % choose the function to use, f, g, or h if (choice=1): P:=F; elseif (choice=2): P:=G; else: P:=H; fi; % choose the type of reflection if (reflect=1): P:=P; elseif (reflect=2): P:=P reflectedabout((0,0),(1,1)); elseif (reflect=3): P:=P reflectedabout((0,0),(1,-1)); else: P:=P reflectedabout((-1,0),(1,0)); fi; % initialize scale numeric u; 10u=w; % scale and draw graph P:=P scaled u; draw P withcolor blue; % clipping path path cpath; cpath:=(-5,-5)--(5,-5)--(5,5)--(-5,5)--cycle; cpath:=cpath scaled 1u; %[DA 6/25]<========Replace this code from here to next mark with new clipping routine % clip and save current picture picture pic; clip currentpicture to cpath; pic:=currentpicture; % erase currentpicture currentpicture:=nullpicture; %[DA 6/25]<========End of code to replace with new clipping routine %[DA 6/25] Put new clipping routine here. It should return P clipped to clipping path %[DA 6/25] for all choices of "choice" and "reflect: % draw grid for k=-5u step 1u until 5u: draw (-5u,k)--(5u,k) withcolor mygridcolor; draw (k,-5u)--(k,5u) withcolor mygridcolor; endfor; % draw axes drawarrow (-5u,0)--(5u,0); drawarrow (0,-5u)--(0,5u); % label axes label.rt(btex $x$ etex, (5.2u,0)); label.top(btex $y$ etex, (0,5.2.u)); label.bot(btex $5$ etex, (5u,0)); label.lft(btex $5$ etex, (0,5u)); %[DA 6/25]<==========Replace with "draw pic" command with "drawdblarrow P" % redraw line draw pic; \stopbuffer \startlinecorrection[blank] \midaligned{\processMPbuffer} \stoplinecorrection On Jun 25, 2006, at 1:14 PM, Mojca Miklavec wrote:
On 6/25/06, David Arnold wrote:
That is, I would choose a boundary that would present arrow heads at each end of the curve. In the case of rational functions, I would clip each branch separately.
I hope this answers the question.
So that necessary means an arrowhead each time when a function crosses the boundary if I understand correctly (i.e. 1/x would have 4 arrowheads)?
Mojca _______________________________________________ ntg-context mailing list ntg-context@ntg.nl http://www.ntg.nl/mailman/listinfo/ntg-context