Am 03.09.21 um 18:04 schrieb Henning Hraban Ramm via ntg-context:
Would it make sense to check if a point is an edge point (without curve controls)?
In a private reply to my old message, Hans explained to me why this was not possible like I thought (check if the point has control points), since every point has control points. But I didn’t keep at it last fall, and the MP foo is still weak in this one, so, let’s try again: If I iterate over the points of a path like in beginfig(1); path p; p = (0,0) .. (2cm,4cm) -- (4cm,5cm) .. (5cm,6cm) .. (8cm,7cm); draw p withpen pencircle scaled 2pt withcolor .7 white; for t=0 upto length p: drawdot point t of p withpen pencircle scaled 4pt withcolor red; endfor endfig; [2] How can I check if the point is an edge? (I want to randomize only the non-edge points.) 1. First or last point: if t=0 or t=length p. ... if the path is not closed: if not cycle p. OK 2. Would it make sense to check curl or tension? Can I check if the connection is specified as -- ? ?? [2] Other question on the examples from https://tex.stackexchange.com/questions/288259/how-to-draw-dots-equally-spac..., in the answer by Thruston: I want to split the path between (edge) points in segments of the same length. So disregarding the "edge" issue for now, how do I get at the path segment between points (in the for loop above) so that I can use it as a new path q in: for t=0 step s until arclength q: drawdot point arctime t of q of q withpen pencircle scaled 4pt withcolor red; endfor Hraban