All, This code is causing an overflow. Isn't there a setting that will allow bigger numbers? I am not looking for more code and/or rescaling code, but a setting that I know is there that will allow larger numbers. %mode=short \startcomponent section1exercises \project book \product chapter5/chapter5 \usemodule[newmat] \usemodule[math=ext] \usemodule[fig-base] \usefigurebase[figures/figlibSection1] \setupheadnumber[chapter][6] \setupheadnumber[section][1] \def\qor{\quad\text{or}\quad} \def\qqor{\qquad\text{or}\qquad} \def\qand{\quad\text{and}\quad} \def\qqand{\qquad\text{and}\qquad} \setupcolors[state=start] \definecolor[gridlines][s=0.7] \startMPinclusions color mygridcolor; mygridcolor=\MPcolor{gridlines}; color gridlines; gridlines:=\MPcolor{gridlines}; def vtick(expr pos)= draw ((0,-3)--(0,3)) shifted pos; enddef; def htick(expr pos)= draw ((-3,0)--(3,0)) shifted pos; enddef; def opendot(expr pos)= fill fullcircle scaled 4pt shifted pos withcolor white; draw fullcircle scaled 4pt shifted pos withcolor red; enddef; def filleddot(expr pos)= fill fullcircle scaled 4pt shifted pos withcolor red; draw fullcircle scaled 4pt shifted pos withcolor red; enddef; \stopMPinclusions \startuseMPgraphic{55_grid} for k=-5u step 1u until 5u: draw (k,-5u)--(k,5u) withcolor gridlines; draw (-5u,k)--(5u,k) withcolor gridlines; endfor; \stopuseMPgraphic \startuseMPgraphic{55_xy_axes} drawdblarrow (-5u,0)--(5u,0); label.rt(btex $\tfx x$ etex, (5u,0)); label.bot(btex $\tfx 5$ etex, (5u,0)); drawdblarrow (0,-5u)--(0,5u); label.top (btex $\tfx y$ etex, (0,5u)); label.lft(btex $\tfx 5$ etex, (0,5u)); \stopuseMPgraphic \startuseMPgraphic{1010_grid} for k=-10u step 1u until 10u: draw (k,-10u)--(k,10u) withcolor gridlines; draw (-10u,k)--(10u,k) withcolor gridlines; endfor; \stopuseMPgraphic \startuseMPgraphic{1010_xy_axes} drawdblarrow (-10u,0)--(10u,0); label.rt(btex $\tfx x$ etex, (10u,0)); label.bot(btex $\tfx 10$ etex, (10u,0)); drawdblarrow (0,-10u)--(0,10u); label.top (btex $\tfx y$ etex, (0,10u)); label.lft(btex $\tfx 10$ etex, (0,10u)); \stopuseMPgraphic \startuseMPgraphic{1010_xy_axes_ti} drawdblarrow (-10u,0)--(10u,0); label.rt(btex $\tfx x$ etex, (10u,0)); label.bot(btex $\tfx 10$ etex, (10u,0)); label.bot(btex $\tfx -10$ etex, (-10u,0)); drawdblarrow (0,-10u)--(0,10u); label.top (btex $\tfx y$ etex, (0,10u)); label.lft(btex $\tfx 10$ etex, (0,10u)); label.lft(btex $\tfx -10$ etex, (0,-10u)); \stopuseMPgraphic \startuseMPgraphic{05_grid} for k=0 step 1u until 5u: draw (k,0)--(k,5u) withcolor gridlines; draw (0,k)--(5u,k) withcolor gridlines; endfor; \stopuseMPgraphic \startuseMPgraphic{05_xy_axes} drawarrow (0,0)--(5u,0); label.rt(btex $\tfx x$ etex, (5u,0)); label.bot(btex $\tfx 5$ etex, (5u,0)); drawarrow (0,0)--(0,5u); label.top (btex $\tfx y$ etex, (0,5u)); label.lft(btex $\tfx 5$ etex, (0,5u)); \stopuseMPgraphic \startquestions % Exercise #29 \beginquestion \startquestion[ex:secqu.29] $p(x)=-x^6-4x^5+27x^4+78x^3+4x^2+376x-480$ \stopquestion \endquestion \beginlonganswer \startanswer %\startlinecorrection[blank] %\midaligned{\externalfigure[q25v][width=0.4\textwidth]} %\midaligned{\externalfigure[q25][width=0.4\textwidth]} %\stoplinecorrection \stopanswer \endlonganswer \beginshortanswer \startanswer Note that the leading term $-x^6$ (dashed) has the same end-behavior as the polynomial $p$. \startbuffer %initialize scale and draw axes numeric u; 20ux=2in; 10000uy=2in; drawdblarrow (-10ux,0)--(10ux,0); label.rt(btex $\tfx x$ etex, (10ux,0)); label.bot(btex $\tfx -10$ etex, (-10ux,0)); label.bot(btex $\tfx 10$ etex, (10ux,0)); drawdblarrow (0,-5000uy)--(0,5000uy); label.top(btex $\tfx y$ etex, (0,5000uy)); label.lft(btex $\tfx -5000$ etex, (0,-5000uy)); label.lft(btex $\tfx 15$ etex, (0,5000uy)); %leading term vardef lead(expr x)= -1*x*x*x*x*x*x enddef; %polynomial vardef p(expr x)= -1*x**6-4*x**5+27*x**4+78*x**3+4*x**2+376*x-480 enddef; %path p_lead path p_lead; p_lead:=(-4.1352,lead(-4.1352)); for x=-4.1352 step .1 until 4.1252: p_lead:=p_lead--(x,lead(x)); endfor; p_lead:=p_lead--(4.1252,lead(4.1252)); p_lead:=p_lead xyscaled(ux,uy); draw p_lead dashed evenly withcolor red; %path p_p path p_p; p_p:=(-6.5009,p(-6.5009)); for x=-6.5009 step .1 until 5.3356 : p_p:=p_p--(x,p(x)); endfor; p_p:=p_p--( 5.3356 ,p(5.3356)); p_p:=p_p xyscaled(ux,uy); drawdblarrow p_p withcolor blue; label.rt(btex $\tfx p(x)=-x^6-4x^5+27x^4+78x^3+4x^2+376x-480$ etex, (5.3356 ,p(5.3356 )) xyscaled(ux,uy)); \stopbuffer \startlinecorrection[blank] \midaligned{\processMPbuffer} \stoplinecorrection \stopanswer \endshortanswer % Exercise #30 \beginquestion \startquestion[ex:secqu.30] $p(x)=2x^4-3x^3+x-10$ \stopquestion \endquestion \beginlonganswer[-] \startanswer \stopanswer \endlonganswer \beginshortanswer[-] \startanswer \stopanswer \endshortanswer \stopquestions \placeanswers\kern0pt \stopcomponent