Summary
In this article we show how to manage a document in XML format in ConTEXt to produce a representation in PDF format and how the use of tags allows to structure the document PDF similar to XML document. An original style sheet is presented for the complete embedding of the source XML document and how to analyze the PDF via luaTEX to extract the document.

1. Introduction
The term workflow is a description of a process which, possibly in subsequent steps, transforms one or more inputs into one or more outputs.
The definition is obviously adaptable to numerous contexts, and in the context of digital typography
is usually used to describe how to get a final document (which in most of the parts is generally in PDF format) starting from one or more source documents, through various stages that transform

hand the sources in intermediate forms gradually similar to the final one. For example, in the case of a magazine, the source documents can be articles, photos and advertisements and the workflow would then describe how to transform the texts for the layout software, the correct size of the images and advertisements, and how to mark the intermediate components thus obtained for the correct order in the final journal.
In the humanist field, the typical case is that which presents a single source document (normally a paper edition) and a single output, also in this case PDF as, in addition to offering high typographic quality, it supports long-term archiving and is usable on a large number of devices. The problem in this case is how to pass from the paper document to the PDF: the scanning of the pages is only part of the solution because, although it is the cheapest method to preserve information (including typographical), it has the obvious disadvantage of not making it usable the source document for text processing activities. An alternative is to translate the original text into an electronic format that is easily adaptable to a generic workflow, and this is precisely the task of the Text Encoding Initiative (TEI), a consortium that includes universities and research institutions and whose task is to maintain an XML application for encoding texts (especially in the humanist, social sciences and linguistics area) in electronic form. In short, in Anonymous (2014) TEI specifies and describes an XML format for the structure of the text and some meta information (e.g. revisions, original edition data etc.) but not typographical properties - in essence it is the dual scan.
A workflow that has an XML format as input almost always involves intermediate steps that use XSLT or XQUERY (other XML applications, see (Clark, 1999), (Kay, 2007) and Florescu et al. (2010)) to transform the document in a suitable form; in this case it is the same TEI that makes XSLT 2.0 files (known as "style sheets" or stylesheets) available at http://www.tei-c.org/Tools/Stylesheets/index.xml to transform an XML document -TEI in a multitude of outputs: csv, docbook, docx, dtd, epub3, epub, fo, html5, html, ibooks, json, latex, lite, oddhtml, odt, p4, rdf, relaxng, tcp, txt, and xlsx , following what is written in http: //www.tei-c.org/release/doc/tei-xsl. Note that the PDF format is not directly provided.
In practice, there is only one open source program (called processor in this area) capable of
use XSLT 2.0: Saxon stylesheets (available at http://saxon.sourceforge.net), which is a Java program and requires the proper runtime.
Considering the TEX area, there are practically two types of workflows:
• the first, outlined above, uses an XSLT processor to translate an XML-TEI document into pdfLATEX or XELATEX format and then uses the corresponding layout engine for the PDF. In the LATEX environment it is probably the only workflow used;

• the second uses a processor written in TEX (not necessarily completely XSLT compatible) to directly process the XML file.

It should be noted that the set of elements / attributes described in the guidelines is really very rich: it is natural that an author uses a rather restricted subset (for example, only the elements relating to a critical edition) and that therefore the relative style sheet implements an XML workflow that translates only these elements. In essence, it is a question of distinguishing between workflows that accept any XML-TEI against a specific workflow for a specific text, which normally results more manageable than a generic one.

Here is a fragment of William Shakespeare's Romeo and Juliet (of which we will give below details) in XML-TEI format; are the first replies of the first act:

<div1 type="act" n="1" org="uniform"
sample="complete">
<head>ACT I</head><lb ed="F1" n="2" />
<div2 type="scene" n="1" org="uniform"
sample="complete">
<head>SCENE I</head>
<stage type="setting">
Verona. A public place.
</stage>
<lb ed="F1" n="3" />
<stage type="entrance">
Enter SAMPSON and GREGORY,
<lb ed="F1" n="4" />
of the house of Capulet,
armed with swords and bucklers.</stage>
<lb ed="G" /><lb ed="F1" n="5" />
<sp who="sam.">
<speaker>Sam.</speaker><p>
Gregory, o’ my word, we’ll not
<lb ed="G" />carry coals.
<lb ed="G" />
<lb ed="F1" n="6" /></p></sp>
<sp who="gre.">
<speaker>Gre.</speaker>
<p>No, for then we should be colliers.
<lb ed="G" />
<lb ed="F1" n="7" /></p></sp>
<sp who="sam.">
<speaker>Sam.</speaker>
<p>I mean, an we be in choler, we’ll
<lb ed="G" />draw.
<lb ed="G" />
<lb ed="F1" n="8" /></p></sp>
<sp who="gre.">
<speaker>Gre.</speaker><p>
Ay, while you live, draw your neck
<lb ed="G" />
<lb ed="F1" n="9" />out o’ the collar.
<lb ed="G" />
<lb ed="F1" n="10" />
</p></sp><sp who="sam.">
<speaker>Sam.</speaker>
<p>I strike quickly, being moved.
<lb ed="G" />
<lb ed="F1" n="11" />
</p></sp><sp who="gre.">
<speaker>Gre.</speaker>
<p>But thou art not quickly moved to
<lb ed="G" />strike.
<lb ed="G" n="10" />
<lb ed="F1" n="12" /></p></sp>
<sp who="sam.">
<speaker>Sam.</speaker>
<p>A dog of the house of Montague moves me.
<lb ed="G" /><lb ed="F1" n="13" /></p></sp>
<sp who="gre.">
<speaker>Gre.</speaker>
<p>To move is to stir; and to be valiant
<lb ed="G" />is to stand:
<lb ed="F1" n="14" />
therefore, if thou art moved, thou
<lb ed="G" />runn’st away.
<lb ed="G" /><lb ed="F1" n="15" />
</p></sp><sp who="sam.">
<speaker>Sam.</speaker>
<p>A dog of that house shall move me
<lb ed="G" />to stand: <lb ed="F1" n="16" />
I will take the wall of any man or
<lb ed="G" />maid of Montague’s.
In figure 1 there is a possible presentation. Finally, in almost all cases it does not matter if the workflow is reversible, or if it is possible to reconstruct the entrance from the exit and to what extent.

In fact, in PDFs produced with pdfLATEX or XELATEX, the logical structure appears evident to the user but is not encoded within the PDF so that it can be used by other programs (bookmarks only contain structure information, not tables, lists, etc.). In the next sections we will see how to deal with an XML workflow with ConTEXt-MkIV, and if the previous observations have a satisfactory answer.

2 XML in ConTEXt
ConTEXt-MkIV ((Hagen, a), (Hagen, b)) exclusively uses luaTEX as a layout engine (engine) 1 and implements a language to transform XML documents or more precisely to select the elements of a document to then map them into macros TEX (Hagen, c). This language is not an implementation of XSLT and uses the internal LPEG library (Ierusalimschy, 2009) and a specific Parsing Expression Grammar (or PEG, see (Grune and Jacobs, 2007)) for parsing a generic XML document. The resulting parser is quite powerful, which is not unusual if you think that it has to convert elements only to ConTEXt.

As previously mentioned, the TEI document chosen is the work of William Shakespeare Romeo and Juliet, W. G. Clark, W. Aldis Wright, Ed., The Globe Shakespeare, New York, Nelson Doubleday, Inc. available for download at

http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.03.0053.
As a first step, it was decided to modify the file to make it compatible with the latest version

Processing an XML file with ConTEXt does not differ much from using an XSLT processor: first we create the file Perseus_text_1999.03.0053-2.6.0.tex

which loads the s-tei-Perseus-text-1999-03-0053-style style file and then processes the XML file
Perseus_text_1999.03.0053-2.6.0.xml or:
\loadmarkfile {%
s-tei-Perseus-text-1999-03-0053-style}
\starttext
\xmlprocessfile {RandJ}
{Perseus_text_1999.03.0053-2.6.0.xml} {}
\stoptext
The stylesheet defines typographic characteristics such as the font (TeX Gyre Schola), the layout of
page and the setup of the only two sectioning levels used (corresponding to the analogous levels in the XML document). The relevant files for XML element mapping are though

s-tei-Perseus-text-1999-03-0053-basics.lua
And
s-tei-Perseus-text-1999-03-0053-basics.mkiv
%D \module
%D [file=s-tei-Perseus-text-1999-03-0053-style,
%D version=2014.07.01,
%D title=Romeo and Juliet,
\placebookmarks[chapter][all][force=yes]
%D subtitle=,
%D author=Luigi Scarso,
\mainlanguage[en]
%D date=\currentdate,
%D copyright={Luigi Scarso}]
\registerctxluafile%
{s-tei-Perseus-text-1999-03-0053-basics}
{1.001}
\loadmarkfile%
{s-tei-Perseus-text-1999-03-0053-basics}
\registerctxluafile%
{s-tei-Perseus-text-1999-03-0053-style}
{1.001}
\setuppapersize[A4,landscape][A4,landscape]
\starttypescript[randj]
\definetypeface [randj]%
[rm] [serif] [schola] [default]
\definetypeface [randj]%
[ss] [sans] [schola] [default]
\definetypeface [randj]%
[tt] [mono] [schola] [default]
\definetypeface [randj]%
[mm] [math] [modern] [default]
\stoptypescript
\setupbodyfont[randj,10pt]
\setuplayout
[width=middle,
height=middle,
backspace=3cm,
cutspace=1cm,
rightmargin=0cm,
leftmargin=2cm,
margindistance=0cm,
footer=1cm,
header=\zeropoint]
\setuppagenumbering
[alternative=singlesided,
location={footer,middle}]
\setuphead[chapter]
[style=\tfc,
align=middle,
number=no,
expansion=yes,
before=,
after=\blank,
page=yes]
\setuphead[section]
[style=normal,
align=middle,
number=no,
expansion=yes,
before={\blank[2*line]},
after={\blank[line]},
page=no]
\setupinteraction[state=start,
color=black,
contrastcolor=black,
style=normal,
title={Romeo and Juliet},
author={Luigi Scarso}]
\placebookmarks[chapter][all][force=yes]
\mainlanguage[en]
The MkIV * basics.mkiv file shows the mechanism used by ConTEXt for XML: it is defined a setups environment describing how to map XML elements in ConTEXt environments:

\startxmlsetups xml: tei: Perseus: text: 1999: 03: 0053-setups
\xmlsetsetup {# 1} {*} {xml: tei: *}
\stopxmlsetups
and register it to activate it:
\xmlregistersetup {xml: tei: Perseus: text: 1999: 03: 0053-setups}
The meaning of the macro \ xmlsetsetup {# 1} {*} {xml: tei: *} is the following: the element e (* means "all elements") of the file # 1 associated with this setup is processed by the setups xml : tei: e - which must be defined by the user.

For example, the TEI element is processed by \ startxmlsetups xml: tei: TEI
\xmlfunction {# 1} {tei: TEI}
\stopxmlsetups
his son teiHeader is:
\startxmlsetups xml: tei: teiHeader
\xmlfunction {# 1} {tei: teiHeader}
\stopxmlsetups
The macro \xmlfunction {# 1} {# 2} is equivalent to the Lua function xml.functions ["# 2"] (# 1), where # 1 is the element of the document; for example \xmlfunction {# 1} {tei: TEI} seen above calls the xml.functions ["tei: TEI"] (# 1) function with # 1 the TEI element of the document, that is the root.

Each element of the document is mapped like this: basically each element of the document calls a Lua function defined in the Lua * basics.lua file. Here is the section of the Lua file related to the TEI and teiHeader elements:

local xml_func = xml.functions or {}
local function TEI(t)
local att = {[’elementname’]=’TEI’}
context.startelement({"document"},att)
context.setupelementuserproperties(
{’document’},att)
lxml.flush(t)
context.stopelement()
end
local function teiHeader(t)
local att = {[’elementname’]=’teiHeader’}
context.startelement({"metadata"},att)
context.setupelementuserproperties(
{’metadata’}, att)
context([[{\sc]])
lxml.flush(t)
context([[}]])
context.blank()
context.stopelement()
end
xml_func["tei:TEI"] = TEI
xml_func["tei:teiHeader"] = teiHeader
Leaving aside for the moment startelement, setupelementuserproperties and stopelement that we will see in the next section, the TEI (t) function with lxml.flush (t) simply enables the processing of child elements; teiHeader (t) is more or less similar, but it wraps the children inside a group {\sc ..} to activate the small caps of the font. As you can see, when you are on the Lua "part" it is possible to communicate with the TEX "part" using the context (<tex-string>) function: in ConTEXt it is a widely used function, and is specialized for managing macros at the same time. point that it is possible to write entire documents only in Lua (for example the Lua context.blank () function is equivalent to the macro \ blank, and so for each ConTEXt macro: naturally in some cases TEX remains more simple and clear compared to the Lua counterpart).
We leave out the other elements, as we believe we have shown the main parts of the XML processor. In Hagen (c) the various techniques for selecting / filtering nodes using certain conditions are described, but basically the complexity is not different from the XSLT language. The relationship between XML element and typographic element also requires knowledge of ConTEXt syntax, but even in this case the complexity is similar to that of LATEX. In the next section we will instead see a peculiar feature of ConTEXt, PDFs with tags.

3 Tagged PDF
The PDF 1.7 reference guide (available from Adobe) dedicates chapter 10 to the description of how it is possible to insert information on the logical structure of the source document within the PDF file. The simplest level is Marked Content where a series of PDF operators associates a tag with a content stream (or part of it): for example, the EMC BDC pair uses the BDC properties tag syntax… EMC and is used in ConTEXt to mark a part of the text, for example the title of a section:
/sectiontitle <</MCID 0>>BDC
BT
/F1 17.21541 Tf 1 0 0 1 353.324 528.9996 Tm
[<002F0060001C004B001C>30<006900420062006800
540032006000620051004D>25<00A4>]TJ
ET
EMC
At a higher level is the logical structure, a hierarchical set of structure elements each represented by a dictionary. The structure elements and the visible and associated contents are stored in different parts of the PDF but each has a pointer to the other, in order for example to be able to associate a title to a page. In practice, the logical structure allows to define a tree structure, where the children are terminal (for example Marked Content) or non-terminal nodes - that is other structure elements. At this level, no names of the structure elements are established, so the user can use the most convenient names. Adobe has introduced a further level, the Tagged PDF, which is based on the previous two but where it sets the name of the structure elements and their semantics (tags).
Unfortunately the tags define a rather poor document from a semantic point of view, but in the logical structure there is a dictionary (RoleMap) that maps the name of the structure elements defined by a user with the tags of the Tagged PDF: this implies that a user who supplies a RoleMap automatically defines a Tagged PDF.
To use Tagged PDF in ConTEXt you need to enable them with
\setupstructure[state=start,method=auto]
\setuptagging[state=start]
as they are disabled by default. Once enabled, the structure elements are automatically added with the sectioning commands, lists, tables and figures.
ConTEXt defines its own set of structure elements, and provides the relative RoleMap, therefore
can produce a Tagged PDF - in fact, it can produce PDF / A-1a that is Tagged PDf valid for digital archiving. Although this set is better than the one defined by Adobe of course it is not the set of tags used for example by TEI: obviously it is possible to modify the ConTEXt code to use the TEI tags with an appropriate RoleMap, but here we propose a different solution.
At the logical structure level, the (optional) UserProperties dictionary is defined for a structure element, the content of which is managed by the user application.
It contains an array of key /value pairs that you can use like this:
1. the elementname key is fixed with the name of the XML element.
2. if an XML element has an attribute a with value v, the key a with value v is fixed - in practice, the attribute is copied.
For example, the TEI sp element which marks the speech of an actor and which has as an attribute who is mapped in the p element of ConTEXt in this way:

local function sp(t)
local at = t.at
local att = {[’elementname’]=’sp’}
att.who = at.who or nil
context.startelement({"p"},att)
context.setupelementuserproperties({’p’},
att)
lxml.flush(t)
context.stopelement()
end
Here is for example how it is saved in the PDF
The element <sp who = 'chorus'> ... </sp>:
209 0 obj
<< / A << / O / UserProperties / P [
<< / V (sp) / N (elementname) >>
<< / V (chorus.) / N (who) >>] >>
/ Type / StructElem / S / p
/ Pg 201 0 R / K 208 0 R / P 207 0 R >>
It is evident that the name elementname is arbitrary and in general it must be verified that it is not in conflict with other attributes - in this specific case there are no conflicts.
The final step is: Is it possible to check the structure of a Tagged PDF? The answer is positive: with the current version of luaTEX, the Lua epdf module provides a set of functions for low level to read a PDF file and then to "navigate" through its objects. Naturally it requires quite a thorough understanding of the PDF format, but the Adobe specifications are clear and freely available. Furthermore, by using low-level functions, the related program will be less subject to the consequences of library updates. The author, however, being part of the development team, noticed that with the latest update of the poppler library which is the basis of epdf new methods have been added for structure elements and then added those methods to the epdf library (the modification concerns for the moment only the experimental version, but it is likely that it will soon be extended to the canonical one).
Building a program that reads the structure of a PDF is slightly easier if you have they introduce new methods for structure elements; in this case the program saves the information relating to the UserProperty of a structure element and presents them in XML format. In the case of the TEI document of Romeo and Juliet the first tags inside the PDF are:

<TEI>
<teiHeader type="text" >
<fileDesc>
<titleStmt>
<title>
Romeo and Juliet
</title>
<author> William Shakespeare
</author>
<editor role="editor" > W. G. Clark
</editor>
<editor role="editor" > W. Aldis Wright
</editor>
<sponsor> Perseus Project,
Tufts University
</sponsor>
<principal> Gregory Crane
</principal>
<respStmt>
<resp> Prepared under the
supervision of
</resp>
<name>
Lisa Cerrato
</name>
<name>
William Merrill
</name>
<name>
Elli Mylonas
</name>
<name>
David Smith
</name>
</respStmt>
<funder> NSF, NEH: Digital
Libraries Initiative, Phase 2
</funder>
<respStmt xml:id="CEW.ed" >
<name> CEW
</name>
<resp> ed.
</resp>
</respStmt>
<\titleStmt>
<publicationStmt>
da confrontare con quello originale:
<TEI>
<teiHeader type="text" > <!-- status="new" -->
problema pricipale è scegliere un XML adeguato.
</titleStmt>
<publicationStmt>
<fileDesc>
<titleStmt>
<title>Romeo and Juliet</title>
<author>William Shakespeare</author>
<editor role="editor">W. G. Clark</editor>
<editor role="editor">W. Aldis Wright
</editor>
<sponsor>Perseus Project, Tufts University
</sponsor>
<principal>Gregory Crane</principal>
<respStmt>
<resp>Prepared under the supervision of
</resp>
<name>Lisa Cerrato</name>
<name>William Merrill</name>
<name>Elli Mylonas</name>
<name>David Smith</name>
</respStmt>
<funder n="org:DLI2">NSF, NEH: Digital
Libraries Initiative, Phase 2</funder>
<!-- Revision -->
<respStmt xml:id="CEW.ed"><name>CEW</name>
<resp>ed.</resp></respStmt>
</titleStmt>
<publicationStmt>
The code is available at: https://github.com/mlgdominici/TEI-TeX/tree/master/ctx/Perseus_text_1999.03.0053-2.6.0
4 Conclusions
The processing of XML files is quite direct in ConTEXt and does not rely on external processors. This means reducing the dependence on external components, but using a transformation language that is not XSLT, certainly more widespread and for which processors are available relatively cheap. The choice therefore depends on other constraints imposed by the workflow used. Instead, the prospects that open up with Tagged PDFs are interesting, in particular the ability to query PDFs as if they were XML documents. It must be said that normally a PDF has several parts compressed to optimize space, so the query in the case of a long document becomes inefficient if the "embedded" XML is not saved first. In the case of PDF "forms" that present data in tabular form generally on 2 or 3 pages, giving up compression may be feasible and this approach to Tagged PDFs is more promising: for example in the case of extracting reports from a database, a Tagged PDF with these characteristics lends itself well to being used by programs that analyze reports - perhaps to publish data on the Web with a completely different presentation. Another interesting area is the technical data sheet of a product to compare with the original one: industrial scholar: the characteristics are mostly in tabular form and it is not particularly difficult to translate them into XML - probably in these cases the main problem is choosing a suitable XML.
Bibliographical references
Adobe. «Document Management – Portable Document Format – Part 1: PDF 1.7, First Edition». http://www.adobe.com/devnet/pdf/pdf_reference.html.
Anonymous (2014). TEI P5: Guidelines for Electronic Text Encoding and Interchange. Version 2.6.0. Last updated on 20th January 2014, revision 12802. TEI Consortium, eds. URL http://www.tei-c.org/Guidelines/P5/.
Clark, J. (1999). «XSL transformations (XSLT) version 1.0». W3C recommendation, W3C.
http://www.w3.org/TR/1999/REC-xslt-19991116

 HYPERLINK ""
.
Florescu, D., Simeon, J., Boag, S., Chamberlin, D., Fernandez, M. e Robie, J. (2010). «XQuery 1.0: An XML query language (second edition)». W3C recommendation, W3C. http://www.w3.org/TR/2010/REC-xquery-20101214/

 HYPERLINK ""
.
Grune, D. e Jacobs, C. (2007). Parsing Techniques: A Practical Guide. Monographs in Computer Science. Springer. URL http://books.google.it/books?id=05xA_d5dSwAC

 HYPERLINK ""
.
Hagen, H. (a). «? context». http://www.pragma-ade.nl/general/manuals/what-is-context.pdf

 HYPERLINK ""
.
— (b). «CONTEXT MKII CONTEXT MKIV». http://www.pragma-ade.nl/general/manuals/mk.pdf

 HYPERLINK ""
.
— (c). «Dealing with XML in ConTEXt-MkIV». http://www.pragma-ade.nl/general/manuals/xml-mkiv.pdf

 HYPERLINK ""
.
Ierusalimschy, R. (2009). «A text patternmatching tool based on parsing expression grammars». Softw. Pract. Exper., 39 (3), pp. 221–258. URL http://dx.doi.org/10.1002/spe.v39:3

 HYPERLINK ""
.
Kay, M. (2007). «XSL transformations (XSLT) version 2.0». W3C recommendation, W3C. Http://www.w3.org/TR/2007/REC-xslt20-20070123/

 HYPERLINK ""
.
Luigi Scarso luigi dot scarso at gmail dot com
