
Extension language integration of LuaTeX and LilyPond

David Kastrup

Abstract

LuaTEX uses Lua as its extension language while the music typesetter LilyPond
employs the Scheme dialect GUILE for that purpose.

It is interesting to see how those extension languages are integrated into
the ”core” language and what interfaces are used for passing information back
and forth between user, principal language, and extension languagem and to what
degree the languages interact to form a coherent experience or one more modelled
along the line of ”I’d rather like to discuss this with your brain surgeon”.

It will [hold]. I couldn’t put a mere mend-
ing charm on the Ring of Erreth-Akbe, like
a village witch mending a kettle. I had to
use a Patterning, and make it whole. It is
whole now as if it had never been broken.
– Ursula K Le Guin, “The Tombs of Atuan”

As an initial remark: using LilyPond does not re-
quire dealing with the complex mechanisms shown
here. Those mechanisms exist exactly to save the
user from requiring arcane knowledge before being
able to do serious work.

The music typesetting system LilyPond’s low-
level implementation language is C++. The Scheme
interpreter GUILE, designated as the GNU project’s
extension language, was integrated into LilyPond at
an early stage.

While LilyPond as a music description language
and its extensibility through GUILE have moved
forward together, the underlying internals and con-
cepts, data structures and algorithms are still get-
ting streamlined.

It remains a challenge to straighten out the sys-
tem architecture and unify programming and user
features to a degree matching even the most näıve
expectations characteristic for beginners.

While web searches, mailing lists and other so-
cial media can help with independently encountered
problems1, one should not exhaust the goodwill of
users with actual or perceived complexity and in-
consistencies.

1 LilyPond and Scheme

1.1 A sketch of Scheme

Scheme, a language in the Lisp family, is marked by
its absence of structuring interpunctation. With few
exceptions, the only structuring feature is a pair of

1 ”‘Computers are useless. They can only provide an-
swers.”’ – Pablo Picasso

matching parentheses enclosing a list. Since every
layer of nesting is a list of its own, keeping track of
open parentheses and choosing an appropriate in-
dentation is a task frequently delegated to a list-
aware editor.

Executing a program involves the ‘evaluation’
of lists, and each list corresponds to a function (or
macro) call, with the first list member specifying
the function, and the other list members specifying
function argument expressions.

Here are some example expressions and the cor-
responding results:

(+ 2 3) 7→ 5

(if (< 2 3) (+ 5 7) 8) 7→ 12

In contexts where lists would be evaluated, the eval-
uation can be inhibited by using one of several quot-
ing mechanims, the simplest being straight quotes:

’(+ 1 2) 7→ (+ 1 2)

Since lists are both the program representation of
Scheme as well as its most important data structure,
manipulating programs is easy, and Scheme has a
powerful and expressive macro system. At the same
time, this lack of typographical structure provided
by other interpunctions than parentheses levels is
usually considered the least endearing characteristic
of languages in the LISP family. Indentation con-
ventions help with finding one’s way around other
people’s Scheme programs.

1.2 Transitioning between the worlds

LilyPond’s input language focuses on musical con-
structs: note pitches, note durations, chords, articu-
lations, melodies, and so on. Scheme as a program-
ming language is more concerned with entities like
functions, numbers, strings. In order to restrain the
impetus for duplication of functionality over the re-
spective main reigns of the languages, the transition-
ing between both should be as smooth as possible:

TUGboat, Volume 0 (9999), No. 0 — Proceedings of the 9999 Annual Meeting 1001

http://www.luatex.org
http://www.lua.org
http://www.lilypond.org
http://www.gnu.org/software/guile
http://www.gnu.org

David Kastrup

not as much like switching between German and En-
glish in a poem, but rather like between verbs and
nouns in a sentence.

The principal tools for transitioning in Lily-
Pond are two constructs: # within LilyPond mode
will use Scheme to read and evaluate the imme-
diately following Scheme expression; #{ inside of
Scheme will switch into LilyPond mode until reach-
ing the matching #} code. Either construct will
return the resulting value for use in the respective
other language.

Quite importantly, reading/scanning of embed-
ded code is done completely under the control of the
respective other language interpreter, so the foreign
input is free from string quoting characters and sim-
ilar contraptions.

Now let us jump right into the deep end and
delve into a brief example intertwining those con-
structs with Scheme macros.

1.3 Exposition

The following example provides and demonstrates
some useful facility, making use of several interac-
tions between LilyPond/GUILE.

#(define-macro (pattern args result)

‘(define-music-function

(parser location ,@args)

,(make-list (length args) ’ly:music?)

#{ $@(list ,@result) #}))

$(pattern (A B C D) (A B D A C D))

{ a’ a’ a’ a’ }

{ b’ b’ b’ b’ }

{ c’’ c’’ c’’ c’’ }

{ d’’ d’’ d’’ d’’ }

��� ������ �
�� ����

3 � ��
�� �� ��5 ���

Now apart from having a reasonably nice effect
(pattern takes two lists of symbols, the first speci-
fying the input order of its arguments, and the sec-
ond specifying the desired output order), the code
is both short as well as sophisticated. We will now
first analyze the logic and elements of the code, and
then take a look at how LilyPond manages to make
it work.

1.4 The storyline

Scheme macros are a variation of Scheme func-
tions that changes execution order. When a Scheme
function is called, first its arguments get evaluated,
and then the function is executed with the evaluated
arguments, and its return value is the result of the
function call.

A macro changes the order: the macro is called
first on the unevaluated arguments (in the case of
the call of pattern, the first argument is a list with
the symbols A, B, C and D). The result of the macro
call is then evaluated in the Scheme evaluator. The
result of this evaluation after executing the macro
becomes the result of the macro call.

Since unevaluated Scheme code usually consists
of nested lists, it is often convenient to specify the
macro body in the form of almost entirely quoted
lists (quotes keep the list from premature evalua-
tion), but with a few variable elements spliced in.

Quasiquotes are the tool of choice for working
with mostly constant lists with a few variable ele-
ments, and are seen in connection with most macros.
The whole quasiquote is introduced with a back-
ward quote character “‘” instead of the normal one
“’”. They are called “quasiquotes” because inside
of such a quoted expression, you can ‘unquote’ parts
by preceding them with a comma “,”, and you can
‘unquote-splice’ a list expression into a surrounding
list by preceding them with comma-at “,@”.

So, for example,
‘((+ 1 2) ,(+ 1 2) ,@’(+ 1 2))

evaluates to the list
((+ 1 2) 3 + 1 2)

The starting list (+ 1 2) containing the symbol “+”
and the numbers 1 and 2 is retained unchanged. The
same construct with an unquote before it is evalu-
ated to 3 before being put in the list, and the quoted
list ’(+ 1 2) evaluates by removing the quote, to (+

1 2) which is then spliced into the surrounding list,
effectively removing one level of parentheses.

The call to pattern Now the call to pattern looks
like

(pattern (A B C D) (A B D A C D))

and, considering that macro arguments are not eval-
uated, the result of substituting the arguments is
simply

‘(define-music-function

(parser location ,@’(A B C D))

,(make-list (length ’(A B C D)) ’ly:music?)

#{ $@(list ,@’(A B D A C D)) #})

(we have inserted quotes appropriately to indicate
that the lists are not to be executed, so that one
can feed this into a Scheme sandbox inside of Lily-
Pond) and if we now execute the quasiquote, we are

1002 TUGboat, Volume 0 (9999), No. 0 — Proceedings of the 9999 Annual Meeting

Extension language integration of LuaTeX and LilyPond

left with the following expression when finishing ex-
ecuting the macro:

(define-music-function (parser location A B C D)

(ly:music? ly:music? ly:music? ly:music?)

#{ $@(list A B D A C D) #})

This is the definition of a music function doing the
required transformation of four music arguments to
the requested order.

LilyPond’s “$@” operator is a variation on the
Scheme splicing operator and has been introduced in
LilyPond 2.15.41: it can be used for splicing a list of
expressions into the surrounding #{. . . #} construct,
and so

#{ $@(list A B D A C D) #}

is essentially the same as

#{ $A $B $D $A $C $D #}

To achieve the same effect in older LilyPond ver-
sions, we would have had to write

(make-sequential-music

(map ly:music-deep-copy (list ,@result)))

instead of

#{ $@(list ,@result) #}

since one effect of “$” is to create a copy. Whenever
a music expression may be used more than once,
we need to copy it since many functions process-
ing music change their input while processing it.
So the new splicing operator saves us from knowing
make-sequential-music and some other things.

1.5 Behind the scenes

Why does this even work? This question is in-
deed puzzling since macro expansion is a complex
beast, and #{. . . #}, embedded LilyPond, is actually
a piece of LilyPond code that is stored away in a
string and later executed in a copy of the LilyPond
parser. So how is it able to access the original vari-
able result, a parameter of the function call? The
LilyPond manual states that Scheme expressions in-
side of embedded LilyPond are executed in “lexical
closure”. However, macro expansion happens at an
earlier point of time, before closures are even being
formed. So how can this work out?

At the first layer, let us ask the Scheme sandbox
(slightly reformatted):

lilypond scheme-sandbox

GNU LilyPond 2.15.42

Processing ‘[...]/scheme-sandbox.ly’

Parsing...

guile> (define-macro (pattern args result)

‘(define-music-function (parser location ,@args)

,(make-list (length args) ’ly:music?)

#{ $@(list ,@result) #}))

guile> (macroexpand-1 ’(pattern (A B C D)

(A B D A C D)))

(define-music-function (parser location A B C D)

(ly:music? ly:music? ly:music? ly:music?)

(#<procedure embedded-lilypond

(parser lily-string filename line closures)>

parser

" $@(list ,@result) "

#f 3

(list (cons 2 (lambda () (list A B D A C D))))))

guile>

After expanding the macro, we arrive at a call
to the internal function embedded-lilypond which
gets, as expected, the contents of #{. . . #} as a string.
But it also gets “closures” a list containing pairs,
with the first element being an offset into the string,
and the second being an anonymous “lambda” func-
tion for evaluating the embedded Scheme expression
at that point in the string.

LilyPond’s parser uses this anonymous function
that has been created in the lexical environment
(namely its placement in Scheme source code) of the
#{. . . #} expression instead of actually interpreting
the Scheme expression from the text at the time it
passes the whole embedded LilyPond string to the
parser. And it turns out that this lambda function
magically already can deliver the right expression
since it has been formed within the context of the
music function and retained as a closure. So even
while the full LilyPond expression is only stored as
a string and interpreted later, the scraps of Scheme
code inside have been macro-expanded and saved in
a function.

The code reponsible for that is buried in the in-
nards of scm/parser-ly-from-scheme.scm in the
LilyPond source, turning #{. . . #} into the above ex-
pression right inside the Scheme reader: the original
construct enters Scheme only in this preprocessed
version.

Let us dig deeper. Let us take a look at the
embedded Scheme expression itself, outside of the
macro and quasiquote and unevaluated:

guile> ’#{ $@(list ,@result) #}

(#<procedure embedded-lilypond

(parser lily-string filename line closures)>

parser

" $@(list ,@result) "

#f 6

(list (cons 2

(lambda ()

(list (unquote-splicing result))))))

Now “(unquote-splicing result)” is just a
different representation for “,@result”, like we are
now seeing a different representation for the whole
#{. . . #} construct. As part of a larger quasiquote
construct, the “unquote-splicing” operator will
kick in and substitute the value of “result” into
the list, and that is just what we are seeing here.

TUGboat, Volume 0 (9999), No. 0 — Proceedings of the 9999 Annual Meeting 1003

David Kastrup

And the reason that unquote-splicing is ac-
tually found by the quasiquote operator is that in
this stage of evaluation (or rather non-evaluation),
the anonymous lambda function is not yet a func-
tion, but just a list where the first element is the
symbol “lambda”. So the macro can do its work
on the raw form of the expression, and after the
unquote-splicing has done its work, normal eval-
uation happens and turns the result into an anony-
mous function that is later called from the LilyPond
parser when it encounters $@ and skips the following
Scheme expression, taking its value from the call of
the lambda function instead.

Deep breath At the end of this journey, we have
seen how a reasonably concocted broth made from
shoestring and putty is able to intertwine the Lily-
Pond language parser with an integrated Scheme
layer in a manner that provides lexical closure, nest-
ing, back-and-forth passing of values, macros and
functions working across the language boundaries.

It is worth noting that input location is propa-
gated carefully across those layers so that error mes-
sages for erroneous input point to the actual place
of the problem, again making for a unified end user
experience even in the event of user error.

2 Lua as LuaTEX’s extension language

LuaTEX’s way of integrating Lua has to be described
in a more technical manner since the available low-
level mechanisms are not sufficient for providing the
kind of refined and natural interface that LilyPond
offers for GUILE.

TEX actually has its own macro processing sys-
tem called “mouth”. For use inside of the mouth,
LuaTEX provides the \directlua command. The
contents of this command are passed as text into
the Lua interpreter. There is no parameter pass-
ing mechanism short of splicing additional text into
the interpreter. There is no lexical closure mecha-
nism provided. Lua has access to internal TEX vari-
ables, but TEX’s mouth can’t set those variables.
\directlua may print input into TEX’s mouth via
tex.print, however.

TEX’s main processing layer is called its “stom-
ach”. There is no actual interface from LuaTEX’s
stomach to Lua. One can, however, use \directlua
inside of a \protected\def to trigger expansion at
the latest possible point of time, synchronized to
the stomach’s operation. Printing back into TEX’s
mouth via tex.print is still possible in this mode of
operation. Setting variables inside of TEX at their
current nesting level is possible, but there are no
programmatic ways of making decisions based on
such variables.

At a post-stomach level (the TEX taxonomy
prudently does not assign a name) there is a prim-
itive called \latelua that is triggered inside of the
execution of the \shipout primitive. Printing back
into TEX’s mouth at this stage for any purpose other
than immediate shipment is not commendable.

LuaTEX and Lua don’t speak a common lan-
guage, and their communication is complicated by
each language having its own interpretation layers
that cannot easily or naturally be switched off. A
simple LuaTEX example would be

\directlua{tex.print("\noexpand\\message{Hi}")}

The use of \noexpand may seem artificial: how-
ever, in 15 minutes of experiments I have not been
able to find a combination with \unexpanded that
would work on the whole string without expanding
\\, but probably a solution with \detokenize could
be made to work even though its exact operation de-
pends on the current catcode regime.

In a nutshell, the default primitives of LuaTEX
do not constitute a useful or friendly programming
interface. While the same can be said for some stan-
dard TEX primitives, at least their situation is ame-
liorated by the presence of the somewhat ubiqui-
tous thin wrapper of plain TEX forming the basis
for the “TEXbook”, the principal documentation of
TEX. The raw iniTEX has no user-level documenta-
tion, and it was probably a good choice to let the
“TEXbook” provide a view how the available primi-
tives can (and should) be tied together in a coherent
user experience.

Crossing between TEX and Lua requires a lot
of knowledge of unrelated material and is, particu-
larly in the Lua to TEX direction, hardly better than
using pipes.

Now while differentiating between “primitive”
and “definition” in LilyPond does not make all that
much sense, one can at least look at the core C++
functions that the user interface is built on. In this
case, we have

ly:parse-string-expression parser-smob ly-code
filename line

Parse the string ly-code with parser-
smob. Return the contained music ex-
pression. filename and line are optional
source indicators.

ly:parser-clone parser-smob closures

Return a clone of parser-smob. An asso-
ciation list of port positions to closures
can be specified in closures in order to
have ‘$’ and ‘#’ interpreted in their orig-
inal lexical environment.

1004 TUGboat, Volume 0 (9999), No. 0 — Proceedings of the 9999 Annual Meeting

Extension language integration of LuaTeX and LilyPond

Glossing over the techno-babble, it is nevertheless
clear that even the ‘primitives’ are conveying the
information needed for providing a smooth integra-
tion and unified experience of the different language
layers in a natural manner as parameters and return
values.

One can call LilyPond from Scheme and vice
versa, in a functional and straightforward manner.

3 Summary

LuaTEX is not integrated into TEX in a manner that
would make for a unified user experience, with com-
mon information flow and concepts. While some of
this situation is a consequence of its history, Lily-
Pond and its extension language GUILE are sepa-
rate projects as well.

Like LuaTEX, LilyPond has to deal with the is-
sue of independently executing input language inter-
preters. The solutions, while not unbreakable, unify
the language layers to a degree where delayed eval-
uation, macro processing, value passing and even
lexical closures operate in the expected manner. In
that manner, the increasing exposure of advanced
users to Scheme is rarely accompanied by jarring
experiences of exploding internals like when dealing
with LuaTEX.

While the typical user experience of LuaTEX
can likely be improved quite a bit even based on the
existing primitives and might possibly already be so
in the Context format heavily relying on LuaTEX,
this information does not escape into the wild.

If LuaTEX development focused more on the
means of creating and promoting a unified user ex-
perience, its perception as an optional tinker box re-
quiring considerate knowledge and thus being suited
at best for package writers rather than end users
might change.

In particular, it would provide a compelling ar-
gument for preferring LuaTEX over other engines
that can, with considerable effort, be made to solve
pretty much any computing task with the help of
non-user accessible programming.

If the integration of Lua would provide actual
end user features, end users will care about the en-
gine they use. At the current point of time, LuaTEX
mostly pitches itself to users already proficient in
TEX programming and able to deal with the compli-
cations arising when including Lua fragments. The
basic question users ask themselves nowadays is “Do
I need LuaTEX?” when the real question should be
“Do I want LuaTEX?”. To make this case, it is more
important for the end user to see what he can do
better rather than what highly proficient users can
do better using LuaTEX.

4 PostScriptum

Travelling back from the conference made me think
of some nicer ways of working with Lua inside of
TEX than currently possible. Let’s try defining the
TEX interface of the primitive \parshape in Lua.

\protected\luadef parshape (tex)

n = tex:get_number ()

arr = {}

for i=1,n do

arr[i] = {}

arr[i][1] = tex:get_dimen ()

arr[i][2] = tex:get_dimen ()

end

tex.parshape = arr

end

\luadef parshape.number (tex)

return #tex.parshape

end

This is just a very rough sketch. \parshape in the
stomach (\protected keeps it from expanding in
the mouth) reads a number followed by dimension
pairs and stores all that in the parshape. The func-
tion parameter tex is not the global tex array but
rather a local version derived from it via metata-
bles. It likely captures the current grouping as well
as the parse state and has additional function calls
available.

\parshape can be used in number contexts, re-
turning the current parshape size.

\luadef should switch off TEX’s reader, read-
ing lines into the Lua interpreter until a function
definition is completed. Since it should change in-
terpretation of input characters (like % does) even
inside of macros, a special character/catcode might
be used. Note that after \let\hash=#, this charac-
ter can be used with its special meaning even when
reading in macros, so having both or just \luadef

seems feasible.
Implementation details may turn out quite dif-

ferent than sketched here, but the key point is that
Lua right now does not integrate into TEX’s user in-
terfaces to any reasonable degree, and there is a lot
of potential for it doing better than that.

TUGboat, Volume 0 (9999), No. 0 — Proceedings of the 9999 Annual Meeting 1005

	LilyPond and Scheme
	A sketch of Scheme
	Transitioning between the worlds
	Exposition
	The storyline
	Behind the scenes

	Lua as LuaTeX's extension language
	Summary
	PostScriptum

