% This is the first test, title working. \input core-des \setupformulas[numberstyle=normal] % This should probably be the default \setupenumerations [ title=yes, stopper=., location=hanging, style=italic, titledistance=1ex, distance=0.5em, ] \defineenumeration [problem] [text=Problem] \defineenumeration [definition] [text=Definition] \defineenumeration [theorem] [text=Theorem] \defineenumeration [lemma] [text=Lemma] \defineenumeration [proof] [ text=Proof, headstyle=italic, titlestyle=italic, style=normal, number=no, titleleft=, titleright=, stopper=., endmarker=\math{\square}, ] \starttext \startproblem[prob:basic] {Finite Horizon Real||Time Communication Problem} Assume that the encoder and the receiver know the source statistics $P_{X_1}$ and $P_{X_{t+1} \mid X_t}$, $t=1,\dots,T$, the forward and backward channel functions $ H = h$, $\tilde H = {\tilde h}$, the forward and the backward channel noise statistics $P_N$ and $P_{\tilde N}$, the distortion functions $\rho_t(\cdot)$, $t=1,\dots,T$ and the time horizon $T$. Choose a design $(C,G,L)$ that is optimal with respect to performance criterion of~(10), i.e., \placeformula[eq:optimal-cost]\startformula J_T(C,G,L) = J_T = \min_{ \startsubstack \NC C \in C^T \NR \NC G \in G^T \NR \NC L \in L^T \NR \stopsubstack} J_T(C,G,L), \stopformula where $ C^T = C_1 \times \cdots \times C_T$, $ C_t$ is the family of functions from $ X^t \times \tilde { Y} \to Z$, $ G^T = G \times \dots G$ ($T$||times), $ G$ is the family of functions from $ Y \times M \to \hat { X}$, $ L^T = L \times \dots L$ ($T$||times), and $ L$ is the family of functions from $ Y \times M \to M$. \stopproblem \startproof \startitemize[a,intro] \item Consider a component of $\bar B_t$: \input tufte \item Consider a component of $\dot B_t$: \input tufte \item Consider a component of $\hat B_t$: \input tufte \placeendmarker \stopitemize \stopproof \input knuth \stoptext